XTDB
A First Look at XTDB v2

Join James Henderson — Head of Engineering at
XTDB — as he lifts the lid on XT2 development

TUESDAY, DEC 19 @ 11:00 ET / 16:00 GMT / 17:00 CET

For the interactive demo:

1. git clone https://github.com/xtdb/sakila-playground.git

2. cd sakila-playground; clojure -P # download deps

https://github.com/xtdb/sakila-playground.git

Coming up:

What is XTDB v2¢?
An interactive introduction to XTQL
The lifecycle of XT2 data

How you can get involved in the journey to GA

Primary aims for XTDB v2

e Hybrid transactional/analytical processing (‘HTAP’)
o Apache Arrow

o ‘Separating storage from compute’

e Across-time bitemporal queries
o ‘Full’ bitemporality

e Addition of first-class SQL:2011 support
o Introducing XTQL!

Primary aims for XTQL

e Data-oriented query language

e Composable

e JSON + EDN dialects

o client libraries for Java, JavaScript, Python etc to follow soon

e Comparable to SQL, familiar to EDN Datalog

Demo: ‘Sakila’ (MySQL) film rental store playground

1. git clone https://github.com/xtdb/sakila-playground.qgit

2. clj -M:xtdb:nrepl

o connect to the nREPL in your favourite editor
o Or,in Emacs: cider-jack-in-clj

3. user.clj, (xt/q xt-node ‘(<your-xtql-query>))

Guide: https://docs.xtdb.com/intro/what-is-xtqlL.html

Docs: https://docs.xtdb.com/reference/main/xtgl/queries.html

jump

https://github.com/xtdb/sakila-playground.git
https://docs.xtdb.com/intro/what-is-xtql.html#_from
https://docs.xtdb.com/reference/main/xtql/queries.html

from

SELECT f.title, f.length, f.rating FROM film f

(from :film [title length rating])

https://docs.xtdb.com/intro/what-is-xtqlLhtml# from

https://docs.xtdb.com/intro/what-is-xtql.html#_from

Pipelining
SELECT f.title, f.length, f.rating FROM film f ORDER BY f.title LIMIT 10
(-> (from :film [title length rating])

(order-by title)

(1imit 10))

https://docs.xtdb.com/intro/what-is-xtql.html# pipelines

https://docs.xtdb.com/intro/what-is-xtql.html#_pipelines

Filtering

SELECT f.* FROM film f WHERE f.title = 'AFRICAN EGG'

(from :film [{:title "AFRICAN EGG"} *])

https://docs.xtdb.com/reference/main/xtagl/queries.html# from

https://docs.xtdb.com/reference/main/xtql/queries.html#_from

Parameters

(xt/q xt-node "SELECT f.* FROM film f WHERE f.title = ?"
{:args ["AFRICAN EGG"]})

(xt/q xt-node '(from :film [{:title Stitle} *])

{:args {:title "AFRICAN EGG"}})

https://docs.xtdb.com/reference/main/xtgl/queries.hitml# querv_options

https://docs.xtdb.com/reference/main/xtql/queries.html#_query_options

Joins - unify (SQL)

SELECT f.xtSid AS film_id, f.title, f.length, f.rating,

a.xt8id AS actor_id, a.first_name, a.last_name

FROM film f
JOIN film_actor fa ON (fa.film_id = f.xtSid)
JOIN actor a ON (fa.actor_id = a.xtSid)

WHERE f.title = 'AFRICAN EGG'

10

Joins - unify (XTQL)

(unify (from :film [{:xt/id film-id, :title "AFRICAN EGG"}
title length rating])
(from :film-actor [{:film-id film-id, :actor-id actor-id}])

(from :actor [{:xt/id actor-id} first-name last-name]))

https://docs.xtdb.com/intro/what-is-xtql.html#unify

11

https://docs.xtdb.com/intro/what-is-xtql.html#unify

Projections (SQL)

SELECT f.xtSid AS film_id, f.title, f.length, f.rating,
a.xt8id AS actor_id,

(a.first_name || || a.last_name) AS name
FROM film f

JOIN film_actor fa ON (fa.film_id = f.xtS$Sid)

JOIN actor a ON (fa.actor_id = a.xtSid)

WHERE f.title = 'AFRICAN EGG'

12

Projections (XTQL)

(-> (unify (from :film [{:xt/id film-id, :title "AFRICAN EGG"}
title length rating])
(from :film-actor [{:film-id film-id, :actor-id actor-id}])
(from :actor [{:xt/id actor-id} first-name last-name]))
(return title length rating

{:name (concat first-name " " last-name)}))

https://docs.xtdb.com/reference/main/xtal/queries.html# return

13

https://docs.xtdb.com/reference/main/xtql/queries.html#_return

Nested projections (desired result)

[{:title "AFRICAN EGG",
:length 130,
:actors [{:name "MATTHEW CARREY"}
{:name "MATTHEW LEIGH"}
{:name "GARY PHOENIX"}
{:name "DUSTIN TAUTOU"}
{:name "THORA TEMPLE"}],

:rating "G"}]

Nested projections (SQL)

SELECT f.xtSid AS film_id, f.title, f.length, f.rating,

(SELECT ARRAY_AGG(

OBJECT (
‘name’' : (a.first_name || ' ' || a.last_name)))
FROM film_actor fa
JOIN actor a ON (fa.actor_id = a.xtSid)

WHERE fa.film_id = f.xt$id

ORDER BY a.last_name) AS actor
FROM film f
WHERE f.title = 'AFRICAN EGG'

15

Nested projections - ‘pull” (XTQL)

(-> (from :film [{:xt/id film-id, :title "AFRICAN EGG"} title length rating])
(with
{:actors (pull* (-> (unify (from :film-actor [{:film-id Sfilm-id, :actor-id actor-id}])
(from :actor [{:xt/id actor-id} first-name last-name]))
(order-by last-name)
(return {:name (concat first-name " " last-name)}))
{:args [film-id]})})

(return title length actors rating))

https://docs.xtdb.com/reference/main/xtqgl/queries.html# subgqueries

M

https://docs.xtdb.com/reference/main/xtql/queries.html#_subqueries

Aggregations (SQL)

Get me the top 5 frequently starring actors:

SELECT a.first_name, a.last_name, COUNT(*) AS film_count
FROM actor a
JOIN film_actor fa ON (fa.actor_id = a.xtS$Sid)
GROUP BY a.first_name, a.last_name
ORDER BY film_count DESC

LIMIT 5

17

Aggregations (XTQL)

Get me the top 5 frequently starring actors:

(-> (unify (from :actor [{:xt/id actor-id} first-name last-name])
(from :film-actor [actor-id]))
(aggregate first-name last-name {:film-count (row-count)})
(order-by {:val film-count, :dir :desc})

(limit 5))

https://docs.xtdb.com/reference/main/xtgl/queries.html#_aggregate

18

https://docs.xtdb.com/reference/main/xtql/queries.html#_aggregate

Aggregations 2 (Desired result)

Get me the frequency distribution of how many films each actor has appeared in:

[{:film-count 14, :frequency 1}

{:film-count 15, :frequency 2}

{:film-count 24, :frequency 14}
{:film-count 25, :frequency 19}
{:film-count 26, :frequency 14}

{:film-count 27, :frequency 17}

{:film-count 41, :frequency 1}

{:film-count 42, :frequency 1}]

X7 XTDB

Aggregations 2 (SQL)

Get me the frequency distribution of how many films each actor has appeared in:

SELECT fc.film_count, COUNT(*) AS frequency

FROM (SELECT fa.actor_id, COUNT(*) AS film_count
FROM film_actor fa
GROUP BY fa.actor_id) fc

GROUP BY fc.film_count

ORDER BY film_count

20

Aggregations 2 (XTQL)

Get me the frequency distribution of how many films each actor has appeared in:

(-> (from :film-actor [actor-id])
(aggregate actor-id {:film-count (row-count)})
(aggregate film-count {:frequency (row-count)})

(order-by film-count))

https://docs.xtdb.com/reference/main/xtgl/queries.html#_aggregate

21

https://docs.xtdb.com/reference/main/xtql/queries.html#_aggregate

Bitemporality (XTQL)

Find me who’s ever rented ‘African Egg”:

(unify (from
(from

(from

(from

https://docs

:film [{:xt/id film-id, :title "AFRICAN EGG"}])
:inventory [{:xt/id inventory-id} film-id])
:rental {:for-valid-time :all-time
:bind [{:xt/valid-time rented-during}
inventory-id customer-id]})

:customer [{:xt/id customer-id} email]))

.xtdb.com/reference/main/xtqgl/queries.html#_temporal_filters

22

https://docs.xtdb.com/reference/main/xtql/queries.html#_temporal_filters

Bitemporality (XTQL)

Find me who’s ever rented ‘African Egg’ - and what they also rented while they had ‘African Egg’ out:

(-> (unify (from :film [{:xt/id film-id, :title "AFRICAN EGG"}])
(from :inventory [{:xt/id inventory-id} film-id])
(from :rental {:for-valid-time :all-time
:bind [{:xt/valid-time ae-during} inventory-id customer-id]})
(from :customer [{:xt/id customer-id} email])

(from :rental {:for-valid-time :all-time
:bind [{:xt/valid-time other-during} customer-id {:inventory-id
i2}1})
(from :inventory [{:xt/id i2, :film-id f2}])
(from :film [{:xt/id f2} title])
(where (<> title "AFRICAN EGG")
(overlaps? ae-during other-during)))

(return email ae-during other-during title))

23

XTQL DML

XTQL also supports DML - with the full power of the XTQL query language.

(xt/submit-tx xt-node
(xt/sql-op "
UPDATE users SET first_name = 'Sue' WHERE first_name

(xt/submit-tx xt-node
(xt/update-table :users
{:bind [{:first-name "Susan"}]

:set {:first-name "Sue"}}))

https://docs.xtdb.com/intro/what-is-xtgl.html#dml

'Susan'"))

24

https://docs.xtdb.com/intro/what-is-xtql.html#dml

XTQL DML

XTQL also supports DML - with the full power of the XTQL query language.

(xt/submit-tx xt-node
(xt/sql-op "
UPDATE users SET version = version + 1 WHERE first_name = ‘Sue'"))

(xt/submit-tx xt-node
(xt/update-table :users
{:bind [{:first-name "Sue"} version]
:set {:version (+ version 1)}}))

https://docs.xtdb.com/intro/what-is-xtgl.html#dml

25

https://docs.xtdb.com/intro/what-is-xtql.html#dml

Dynamically generating queries - template

template is a helper macro to dynamically generate XTQL queries, inspired by backtick
Within it, you can use Clojure’s ‘unquote’ (~) and ‘unquote-splicing’ (~@) forms.

(defn build-posts-query [{:keys [with-author? popular?]}]
(xt/template (-> (from :posts [{:xt/id id} text
~@(when with-author?
'[author-name])
~@(when popular?
'[likes])])
~@(when popular?
[' (where (> likes 100))]))))

.

https://github.com/brandonbloom/backtick

The lifecycle of XT2 data

XTDB 2.x Node

Query engine
Local cache
XTQL

SQL

R"R"‘Row>>>

Compactor

Indexer

Object Store

amazon

Write-Ahead Log

27

Interlude: Apache Arrow

® Columnar - documents broken down into attributes.
o Faster lookup for individual values & column scanning, especially fixed-width primitives
e Off-heap - manual memory management (on our part)
o Reduced GC pressure
e Memory layout == disk layout
o Significantly reduced serialisation/deserialisation overhead
e Harder to update

o Less of a problem for an immutable database :)

28

Interlude: Apache Arrow

e Fixed width:

[{:a 1, :b 1}, {:a 2, :b 3}, {:a 5, :b 8}]
= {:a [1 2 5], :b [1 3 8]}
e Variable width:
[{:msg “hello”, ...}, {:msg “from”, ...}, {:msg “XTDB”,

= {:msg {:offsets [B6 5 9 13],

:data “hellofromXTDB"}}

..}

29

Interlude: Apache Arrow

e Structs:

[{:a {:a1 1, :a2 2}, ...},

{:a {:a1 3, :a2 4}, ...

= {:a {:a1 [1 3], :a2 [2 4]}}

e Lists:

[{:a [1 1 2], ...}, {:a [35813], ...}]

= {:a {:offsets [0 3 7],

:data [1 12 35 8 13]}}

]

30

Interlude: Apache Arrow

e Unions:

[{:a 4, ...}, {:a “a string”}, {:a 5, ...}, {:a 8, ...

=

{:a {:type-ids [0 1 0 0]
:offsets [0 6 1 2]

:data [[4 5 8]

{:offsets [0 8],

:data [“a string”]}]}}

31

The lifecycle of XT2 data

XTDB 2.x Node

Query engine
Local cache
XTQL

SQL

R"R"‘Row>>>

Compactor

Indexer

Object Store

amazon

Write-Ahead Log

32

The lifecycle of a query

planned to

Logical Plan

optimised to

Physical Plan

compiled to
Relational

Operators

evaluated to

Query results

33

How does it perform?

e Performance optimisation will be a primary focus of the pre-release process

o OLTP, particularly
o More work to do optimising our ‘cold’ (object-store) reads, cache policies, etc.

34

What’s next?

e Your initial impressions and feedback, please! https://discuss.xtdb.com, hello@xtdb.com
e The road to GA:

o Performance, stability, operational considerations - making it production-ready
o Client libraries: Java, JavaScript, et al.
o On our current wishlist:

m Subscribing to incoming transactions

m Speculative transactions (with-tx)

m Schema introspection - information_schema

m Reusable query fragments (‘rules’)

m Window functions, and other next-level SQL functionality

o ..but please let us know what’s on your wishlist!

https://discuss.xtdb.com
mailto:hello@xtdb.com

Operations

Jon Pither
CEO
GitHub
Jon has led projects at Tier-1 Investment
Banks, an online newspaper website, a major
property portal, and an international public
electric bikes scheme. Although he has largely
traded Emacs hacking for Zoom meetings in
his role as CEO, he is still deeply in touch with
XTDB's implementation.

Engineering

James Henderson
Head of Engineering
GitHub
James has spent his career building data-
oriented systems in companies large and small,
across a variety of domains. Eventually he
realised that a lot of the domain c ities

Malcolm Sparks
CTO

GitHub
With over 48 years of applied Computer
Science experience, Malcolm cut his teeth on
the ZX81. He has a long history of building
database systems and services. He has worked
with SQLWindows, Oracle Forms, and Oracle
CASE tools, and even spent time as an Oracle
DBA. Malcolm is also developing a resource
server.

%
»

Matt Butler
Senior Engineer
GitHub
During his long career at JUXT Matt has
delivered numerous complex projects in
multiple sectors, including
telecc ications, infosec, and banking.

he'd faced had 'time' in common, so he came to
JUXT to work on a bitemporal database.

Consulting

Matt's affinity for hard problems now has him
reading database white papers on weekends.

Alex Davis
GitHub

L 8
Kath Read
CFO
GitHub

Kath previously worked as a financial
accountant and now brings her broad
experience of oversight in the software industry
to ensure that XTDB maintains a healthy
balance as an open source product with long-
term commercial sustainability.

Dan Mason
Engineer
GitHub
During his time at JUXT, Dan has worked on a
number of diverse consulting projects across
sectors ranging from Finance to Medtech. He
has been a contributor to XTDB since 26819 and
is currently working on cloud operations.

Tim Greene
GitHub

Head of Product
GitHub
Jeremy became obsessed with databases while
working as a solution engineer at IBM. He
joined the XTDB team in 2819, prior to the
initial public release, and now applies his
passion to helping users and customers solve

their problems.
A
=
Finn Volkel
Senior Engineer Senior Engineer
GitHub GitHub

Finn is a keen student of computer science
who previously worked at Google and
Nextjournal. Working on databases was an
inevitable career trajectory.

Dan is a senior Clojure developer who spent
significant time at Riverford, helping them
revolutionize sustainable farming. Now he
wrangles query optimizers to revolutionize the
database industry.

James Simpson
GitHub

36

XTDB
A First Look at XTDB v2

https://xtdb.com/v2

https://discuss.xtdb.com

hello@xtdb.com

37

https://xtdb.com/v2
https://discuss.xtdb.com
mailto:hello@xtdb.com

