
A First Look at XTDB v2
James Henderson, XTDB Head of Engineering

2023-12-19

1

For the interactive demo:

1. git clone https://github.com/xtdb/sakila-playground.git

2. cd sakila-playground; clojure -P        # download deps

https://github.com/xtdb/sakila-playground.git


Coming up:
● What is XTDB v2?
● An interactive introduction to XTQL
● The lifecycle of XT2 data
● How you can get involved in the journey to GA

2



Primary aims for XTDB v2

3

● Hybrid transactional/analytical processing (‘HTAP’)
○ Apache Arrow

○ ‘Separating storage from compute’

● Across-time bitemporal queries
○ ‘Full’ bitemporality

● Addition of first-class SQL:2011 support
○ Introducing XTQL!



Primary aims for XTQL
● Data-oriented query language

● Composable

● JSON + EDN dialects 
○ client libraries for Java, JavaScript, Python etc to follow soon

● Comparable to SQL, familiar to EDN Datalog

4



Demo: ‘Sakila’ (MySQL) film rental store playground
1. git clone https://github.com/xtdb/sakila-playground.git

2. clj -M:xtdb:nrepl 
○ connect to the nREPL in your favourite editor

○ Or, in Emacs: cider-jack-in-clj

3. user.clj, (xt/q xt-node ‘(<your-xtql-query>))

Guide: https://docs.xtdb.com/intro/what-is-xtql.html

Docs: https://docs.xtdb.com/reference/main/xtql/queries.html 

5

jump

https://github.com/xtdb/sakila-playground.git
https://docs.xtdb.com/intro/what-is-xtql.html#_from
https://docs.xtdb.com/reference/main/xtql/queries.html


from
SELECT f.title, f.length, f.rating FROM film f

(from :film [title length rating])

https://docs.xtdb.com/intro/what-is-xtql.html#_from

6

https://docs.xtdb.com/intro/what-is-xtql.html#_from


Pipelining
SELECT f.title, f.length, f.rating FROM film f ORDER BY f.title LIMIT 10

(-> (from :film [title length rating])

    (order-by title)

    (limit 10))

https://docs.xtdb.com/intro/what-is-xtql.html#_pipelines

7

https://docs.xtdb.com/intro/what-is-xtql.html#_pipelines


Filtering
SELECT f.* FROM film f WHERE f.title = 'AFRICAN EGG'

(from :film [{:title "AFRICAN EGG"} *])

https://docs.xtdb.com/reference/main/xtql/queries.html#_from 

8

https://docs.xtdb.com/reference/main/xtql/queries.html#_from


Parameters
(xt/q xt-node "SELECT f.* FROM film f WHERE f.title = ?"

      {:args ["AFRICAN EGG"]})

(xt/q xt-node '(from :film [{:title $title} *])

      {:args {:title "AFRICAN EGG"}})

https://docs.xtdb.com/reference/main/xtql/queries.html#_query_options 

9

https://docs.xtdb.com/reference/main/xtql/queries.html#_query_options


Joins - unify (SQL)
SELECT f.xt$id AS film_id, f.title, f.length, f.rating,

       a.xt$id AS actor_id, a.first_name, a.last_name

FROM film f

  JOIN film_actor fa ON (fa.film_id = f.xt$id)

  JOIN actor a ON (fa.actor_id = a.xt$id)

WHERE f.title = 'AFRICAN EGG'

10



Joins - unify (XTQL)
(unify (from :film [{:xt/id film-id, :title "AFRICAN EGG"}

                    title length rating])

       (from :film-actor [{:film-id film-id, :actor-id actor-id}])

       (from :actor [{:xt/id actor-id} first-name last-name]))

https://docs.xtdb.com/intro/what-is-xtql.html#unify 

11

https://docs.xtdb.com/intro/what-is-xtql.html#unify


Projections (SQL)
SELECT f.xt$id AS film_id, f.title, f.length, f.rating,

       a.xt$id AS actor_id,

       (a.first_name || ' ' || a.last_name) AS name

FROM film f

  JOIN film_actor fa ON (fa.film_id = f.xt$id)

  JOIN actor a ON (fa.actor_id = a.xt$id)

WHERE f.title = 'AFRICAN EGG'

12



Projections (XTQL)
(-> (unify (from :film [{:xt/id film-id, :title "AFRICAN EGG"}

                        title length rating])

           (from :film-actor [{:film-id film-id, :actor-id actor-id}])

           (from :actor [{:xt/id actor-id} first-name last-name]))

    (return title length rating

            {:name (concat first-name " " last-name)}))

https://docs.xtdb.com/reference/main/xtql/queries.html#_return  

13

https://docs.xtdb.com/reference/main/xtql/queries.html#_return


Nested projections (desired result)
[{:title "AFRICAN EGG",

  :length 130,

  :actors [{:name "MATTHEW CARREY"}

           {:name "MATTHEW LEIGH"}

           {:name "GARY PHOENIX"}

           {:name "DUSTIN TAUTOU"}

           {:name "THORA TEMPLE"}],

  :rating "G"}]

14



Nested projections (SQL)
SELECT f.xt$id AS film_id, f.title, f.length, f.rating,

       (SELECT ARRAY_AGG(

                 OBJECT(

                   'name': (a.first_name || ' ' || a.last_name)))

        FROM film_actor fa

          JOIN actor a ON (fa.actor_id = a.xt$id)

        WHERE fa.film_id = f.xt$id

        ORDER BY a.last_name) AS actor

FROM film f

WHERE f.title = 'AFRICAN EGG'

15



Nested projections - ‘pull’ (XTQL)
(-> (from :film [{:xt/id film-id, :title "AFRICAN EGG"} title length rating])

    (with

     {:actors (pull* (-> (unify (from :film-actor [{:film-id $film-id, :actor-id actor-id}])

                                (from :actor [{:xt/id actor-id} first-name last-name]))

                         (order-by last-name)

                         (return {:name (concat first-name " " last-name)}))

                     {:args [film-id]})})

    (return title length actors rating))

https://docs.xtdb.com/reference/main/xtql/queries.html#_subqueries 

16

https://docs.xtdb.com/reference/main/xtql/queries.html#_subqueries


Aggregations (SQL)
Get me the top 5 frequently starring actors:

SELECT a.first_name, a.last_name, COUNT(*) AS film_count

FROM actor a

  JOIN film_actor fa ON (fa.actor_id = a.xt$id)

GROUP BY a.first_name, a.last_name

ORDER BY film_count DESC

LIMIT 5

17



Aggregations (XTQL)
Get me the top 5 frequently starring actors:

(-> (unify (from :actor [{:xt/id actor-id} first-name last-name])

           (from :film-actor [actor-id]))

    (aggregate first-name last-name {:film-count (row-count)})

    (order-by {:val film-count, :dir :desc})

    (limit 5))

https://docs.xtdb.com/reference/main/xtql/queries.html#_aggregate 

18

https://docs.xtdb.com/reference/main/xtql/queries.html#_aggregate


Aggregations 2 (Desired result)
Get me the frequency distribution of how many films each actor has appeared in:

[{:film-count 14, :frequency 1}

 {:film-count 15, :frequency 2}

 ...

 {:film-count 24, :frequency 14}

 {:film-count 25, :frequency 19}

 {:film-count 26, :frequency 14}

 {:film-count 27, :frequency 17}

 ...

 {:film-count 41, :frequency 1}

 {:film-count 42, :frequency 1}]

19



Aggregations 2 (SQL)
Get me the frequency distribution of how many films each actor has appeared in:

SELECT fc.film_count, COUNT(*) AS frequency

FROM (SELECT fa.actor_id, COUNT(*) AS film_count

      FROM film_actor fa

      GROUP BY fa.actor_id) fc

GROUP BY fc.film_count

ORDER BY film_count

20



Aggregations 2 (XTQL)
Get me the frequency distribution of how many films each actor has appeared in:

(-> (from :film-actor [actor-id])

    (aggregate actor-id {:film-count (row-count)})

    (aggregate film-count {:frequency (row-count)})

    (order-by film-count))

https://docs.xtdb.com/reference/main/xtql/queries.html#_aggregate 

21

https://docs.xtdb.com/reference/main/xtql/queries.html#_aggregate


Bitemporality (XTQL)
Find me who’s ever rented ‘African Egg’:

(unify (from :film [{:xt/id film-id, :title "AFRICAN EGG"}])

       (from :inventory [{:xt/id inventory-id} film-id])

       (from :rental {:for-valid-time :all-time

                      :bind [{:xt/valid-time rented-during}

                             inventory-id customer-id]})

       (from :customer [{:xt/id customer-id} email]))

https://docs.xtdb.com/reference/main/xtql/queries.html#_temporal_filters  

22

https://docs.xtdb.com/reference/main/xtql/queries.html#_temporal_filters


Bitemporality (XTQL)
Find me who’s ever rented ‘African Egg’ - and what they also rented while they had ‘African Egg’ out:

(-> (unify (from :film [{:xt/id film-id, :title "AFRICAN EGG"}])
           (from :inventory [{:xt/id inventory-id} film-id])
           (from :rental {:for-valid-time :all-time
                          :bind [{:xt/valid-time ae-during} inventory-id customer-id]})
           (from :customer [{:xt/id customer-id} email])

           (from :rental {:for-valid-time :all-time
                          :bind [{:xt/valid-time other-during} customer-id {:inventory-id 
i2}]})
           (from :inventory [{:xt/id i2, :film-id f2}])
           (from :film [{:xt/id f2} title])
           (where (<> title "AFRICAN EGG")
                  (overlaps? ae-during other-during)))

    (return email ae-during other-during title))

23



XTQL DML
XTQL also supports DML - with the full power of the XTQL query language.

(xt/submit-tx xt-node
  (xt/sql-op "
    UPDATE users SET first_name = 'Sue' WHERE first_name = 'Susan'"))

(xt/submit-tx xt-node
  (xt/update-table :users
    {:bind [{:first-name "Susan"}]
     :set {:first-name "Sue"}}))

https://docs.xtdb.com/intro/what-is-xtql.html#dml 

24

https://docs.xtdb.com/intro/what-is-xtql.html#dml


XTQL DML
XTQL also supports DML - with the full power of the XTQL query language.

(xt/submit-tx xt-node
  (xt/sql-op "
    UPDATE users SET version = version + 1 WHERE first_name = ‘Sue'"))

(xt/submit-tx xt-node
  (xt/update-table :users
    {:bind [{:first-name "Sue"} version]
     :set {:version (+ version 1)}}))

https://docs.xtdb.com/intro/what-is-xtql.html#dml 

25

https://docs.xtdb.com/intro/what-is-xtql.html#dml


template is a helper macro to dynamically generate XTQL queries, inspired by backtick

Within it, you can use Clojure’s ‘unquote’ (~) and ‘unquote-splicing’ (~@) forms.

(defn build-posts-query [{:keys [with-author? popular?]}]
  (xt/template (-> (from :posts [{:xt/id id} text
                                 ~@(when with-author?
                                     '[author-name])
                                 ~@(when popular?
                                     '[likes])])
                   ~@(when popular?
                       ['(where (> likes 100))]))))

Dynamically generating queries - template

26

https://github.com/brandonbloom/backtick


The lifecycle of XT2 data

27



Interlude: Apache Arrow
● Columnar - documents broken down into attributes.

○ Faster lookup for individual values & column scanning, especially fixed-width primitives

● Off-heap - manual memory management (on our part)
○ Reduced GC pressure

● Memory layout == disk layout
○ Significantly reduced serialisation/deserialisation overhead

● Harder to update
○ Less of a problem for an immutable database :)

28



Interlude: Apache Arrow
● Fixed width: 

[{:a 1, :b 1}, {:a 2, :b 3}, {:a 5, :b 8}]

⇒ {:a [1 2 5], :b [1 3 8]}

● Variable width:

[{:msg “hello”, ...}, {:msg “from”, ...}, {:msg “XTDB”, ...}]

⇒ {:msg {:offsets [0 5 9 13], :data “hellofromXTDB”}}

29



Interlude: Apache Arrow
● Structs: 

[{:a {:a1 1, :a2 2}, ...}, {:a {:a1 3, :a2 4}, ...]

⇒ {:a {:a1 [1 3], :a2 [2 4]}}

● Lists:

[{:a [1 1 2], ...}, {:a [3 5 8 13], ...}]

⇒ {:a {:offsets [0 3 7], :data [1 1 2 3 5 8 13]}}

30



Interlude: Apache Arrow
● Unions: 

[{:a 4, ...}, {:a “a string”}, {:a 5, ...}, {:a 8, ...}]

⇒

{:a {:type-ids [0 1 0 0]

     :offsets [0 0 1 2]

     :data [[4 5 8]

            {:offsets [0 8], :data [“a string”]}]}}

31



The lifecycle of XT2 data

32



The lifecycle of a query

33

SQL XTQL

Logical Plan

planned to

Physical Plan
optimised to

Relational 
Operators

compiled to

Query results
evaluated to



How does it perform?
● Performance optimisation will be a primary focus of the pre-release process

○ OLTP, particularly
○ More work to do optimising our ‘cold’ (object-store) reads, cache policies, etc.

34



What’s next?
● Your initial impressions and feedback, please! https://discuss.xtdb.com, hello@xtdb.com 

● The road to GA:
○ Performance, stability, operational considerations - making it production-ready

○ Client libraries: Java, JavaScript, et al.

○ On our current wishlist:

■ Subscribing to incoming transactions

■ Speculative transactions (with-tx)

■ Schema introspection - information_schema

■ Reusable query fragments (‘rules’)

■ Window functions, and other next-level SQL functionality

○ … but please let us know what’s on your wishlist!

35

https://discuss.xtdb.com
mailto:hello@xtdb.com


36



A First Look at XTDB v2
James Henderson, XTDB Head of Engineering

2023-12-19

37

https://xtdb.com/v2 

https://discuss.xtdb.com

hello@xtdb.com  

https://xtdb.com/v2
https://discuss.xtdb.com
mailto:hello@xtdb.com

